
Addressing food contact chemicals in standards: Insights from recent research

Justin Boucher

Operations Director justin.boucher@fp-forum.org

How many food contact chemicals are there?

for at least 2'160 chemicals evidence for migration exists

~15′000 food contact chemicals are known

100'000 chemicals could potentially be migrating into foodstuffs (unknowns and NIAS) – huge data gaps exist

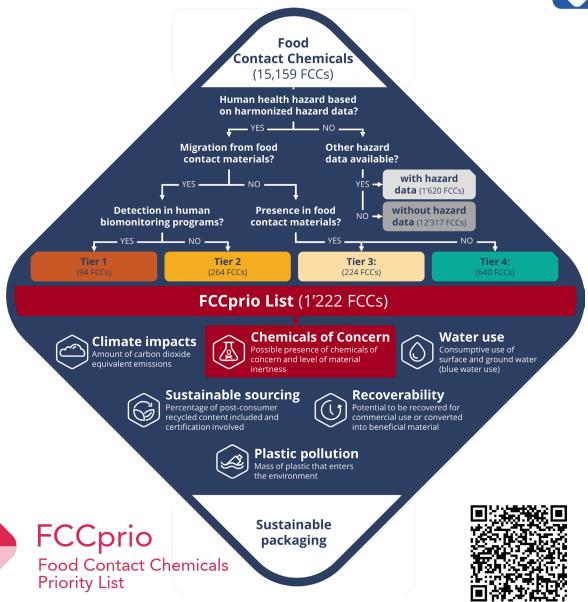
Influencing migration into food

See our fact sheet

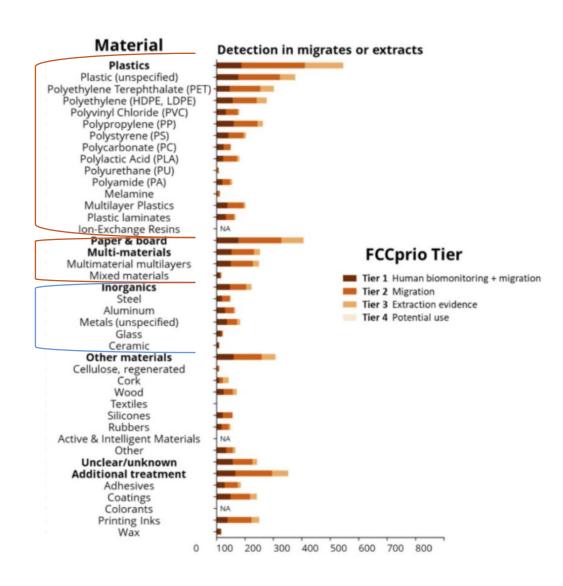
FCCs are being found in people

- 3,601 FCCs detected in people
- 25% of all known FCCs
- Includes hazardous chemicals such as CMRs, EDCs, STOT
- Many chemicals **lack data on potential hazards**

- Linked to many diseases beyond just cancers
- **\$249 billion annually in health costs** just in the US (Trasande et al, 2024)
 - From exposures to: polybrominated diphenylethers (PBDE), phthalates, bisphenols, and PFAS
- Estimated ca. **57,000 preterm births** due to **phthalates** in 2018 in the US (Trasande et al, 2024)
 - Associated health costs of \$3.84 billion
- **356,238 deaths** globally from cardiovascular disease attributed to just **DEHP** exposure (Hyman et al, 2025)
 - 10.4 million years of human life lost



Identifying chemicals of concern


- New FCCprio List identifies:
 - Carcinogenic, mutagenic, toxic to reproduction (CMR)
 - Endocrine disruption
 - Specific target organ toxicity after repeated exposure
 - Persistent, bioaccumulative, and toxic (PBT)
 - Persistent, mobile, and toxic (PMT)
- 94 are top priority:
 - harm health, migrate into food, and are detected in humans

CoCs by food contact material

- Plastics, paper, and board found to have the most CoCs
 - Chemically complex
 - Non-inert (higher migration)
- Inorganics (stainless steel, glass, and ceramics) found to have the least CoCs
 - Chemically simpler
 - More-inert (less migration)
- NIAS not yet considered
 - Inherently higher for complex materials & more migration from less inert materials

Same principles apply to reuse

- Same FCMs used in reuse applications (just thicker)
- Recycled plastics found to contain more chemicals than virgin
 - higher levels of hazardous chemicals
 - hazardous chemicals not known to be used
- Recycled and reusable plastics generate micro- and nanoplastics (same as virgin)

How could we ensure FCMs are fully safe?

- Current approach: track & test thousands of upstream chemicals
- Proposed approach: shift the focus onto broader testing of final products (considers NIAS)
- Need development of new testing methods and bioassays
- Standards could incentivize development of proper testing methods and their use

Cancers

- Breast cancer
- Prostate cancer
- · Kidney cancer

Cardiovascular diseases

- Hypertension
- Atherosclerosis
- Myocardial infarction

Reproductive disorders

- Male infertility
- Female infertility

Brain-related disorders

- Hypothyroidism
- Abnormal neurodevelopment

Immunological disorders

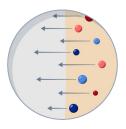
- Immunosuppression
- Asthma
- Allergies

Metabolic diseases

- Diabetes type 1/2
- · Obesity
- Non-alcoholic fatty liver disease

The vision

A world where food contact materials are free from hazardous and untested chemicals.



Key learnings from the evidence

- Hazardous chemicals should not be overlooked when making reuse system decisions.
- Complex and less inert materials (plastics and paper) can contain and release many more chemicals than more inert materials (glazed ceramics, stainless steel, and glass).
- Science is still evolving, and thorough final product testing is needed.

Ways to address these challenges

- Remove known chemicals of concern from food packaging, prioritize essential uses, develop alternatives and testing
- **Enhance transparency**: disclosure of chemical composition, allow consumer self-determination
- **Simplify chemistry**: reduce the number of additives for same functions, reduce non-intentionally added substances
- Consider material complexity and inertness when selecting for reuse and refill systems

Use the UP Scorecard to consider chemicals of concern

Product	Climate	Water use	Chemicals of Concern	Sustainable Sourcing	Recoverability	Plastic Pollution	Summary Score
ceramic mug (User- Defined) Reused 500 times 0% recycled content	57	38	38	100	100	100	72
stainless steel tumbler (User-Defined) Reused 500 times 30% recycled content	52	31	38	100	100	100	70
paper cup, PLA lined 10% recycled content	39	57	13	26	1	96	39
paper cup, PE lined 10% recycled content	35	62	13	26	1	92	38
paper cup, insulated, PLA ined ined content	1	38	13	26	1	97	29
EPS foam cup 9% recycled content	56	49	(13)	1	1	1	20

Thank you!

www.FoodPackagingForum.org

